

String
Manipulation
in
Python
Renan Moura

String Manipulation in Python - Renan Moura - renanmf.com

2

Table
of
Contents
1. Preface
2. Basics
3. How to Split a String
4. How to remove all white spaces in a string
5. Multiline Strings
6. lstrip(): removing spaces and chars from the beginning of a string
7. rstrip(): removing spaces and chars from the end of a string
8. strip(): removing spaces and chars from the beginning and end of

a string
9. String Lowercase

10. String Uppercase
11. Title Case
12. Swap Case
13. Checking if a string is empty
14. rjust(): right-justified string
15. ljust(): left-justified string
16. isalnum(): checking alphanumeric only in a string
17. isprintable(): checking printable characters in a string
18. isspace(): checking white space only in a string
19. startswith(): checking if a string begins with a certain value
20. capitalize(): first character only to upper case in a string
21. isupper(): checking upper case only in a string
22. endswith(): check if a string ends with a certain value
23. join(): join items of an iterable into one string
24. splitlines(): splitting a string at line breaks
25. islower(): checking lower case only in a string

String Manipulation in Python - Renan Moura - renanmf.com

3

26. isnumeric(): checking numerics only in a string
27. isdigit(): checking digits only in a string
28. isdecimal(): checking decimals only in a string
29. isalpha(): checking letters only in a string
30. istitle(): checking if every word begins with an upper case char in

a string
31. expandtabs(): set the number of spaces for a tab in a string
32. center(): centered string
33. zfill(): add zeros to a string
34. find(): check if a string has a certain substring
35. Removing a Prefix or a Suffix in a String
36. lstrip() vs removeprefix() and rstrip() vs removesuffix()
37. Slicing
38. How to reverse a string
39. String Interpolation with f-strings
40. Conclusion

String Manipulation in Python - Renan Moura - renanmf.com

4

Preface
String manipulation is one of those activities in programming that we,
as programmers, do all the time.

In many programming languages, you have to do a lot of the heavy
lifting by yourself.

In Python, on the other hand, you have several built-in functions in the
standard library to help you manipulate strings in the most different
ways you can think of.

In this book I will showcase these many features of the language
regarding strings specifically along with some nice tricks.

If you come from another programming language, you will notice
many things that you can do with the standard library that are only
possible to do with the use of Regular Expressions in other
languages.

Regulars Expressions are super powerful and useful, but can get
really hard to read, so having other alternatives is handy and helps
with keeping a more maintainable codebase.

I’m Renan Moura and I write about Software Development on
renanmf.com.

You can also find me as @renanmouraf on:

Twitter: https://twitter.com/renanmouraf
LinkedIn: https://www.linkedin.com/in/renanmouraf

String Manipulation in Python - Renan Moura - renanmf.com

5

https://renanmf.com
https://twitter.com/renanmouraf
https://www.linkedin.com/in/renanmouraf

Instagram: https://www.instagram.com/renanmouraf

String Manipulation in Python - Renan Moura - renanmf.com

6

https://www.instagram.com/renanmouraf

Basics
The text type is one of the most common types out there and is often
called string or, in Python, just str.

<class	'str'>

<class	'str'>

<class	'str'>

Concatenate

You can use the + operator to concatenate strings.

Concatenation is when you have two or more strings and you want to
join them into one.

New	York

Selecting
a
char

To select a char, use [] and specify the position of the char.

my_city	=	"New	York"

print(type(my_city))

#Single	quotes	have	exactly

#the	same	use	as	double	quotes

my_city	=	'New	York'

print(type(my_city))

#Setting	the	variable	type	explicitly

my_city	=	str("New	York")

print(type(my_city))

word1	=	'New	'

word2	=	'York'

print(word1	+	word2)

String Manipulation in Python - Renan Moura - renanmf.com

7

Position 0 refers to the first position.

Size
of
a
String

The len() function returns the length of a string.

Replacing

The replace() method replaces a part of the string with another. As
an example, let’s replace ‘Rio’ for ‘Mar’.

Rio means River in Portuguese and Mar means Sea, just so you know
I didn’t choose this replacement so randomly.

Count

Specify what to count as an argument.

In this case, we are counting how many spaces exist in “Rio de
Janeiro”, which is 2.

>>>	word	=	"Rio	de	Janeiro"

>>>	char=word[0]

>>>	print(char)

R

>>>	len('Rio')

3

>>>	len('Rio	de	Janeiro')

14

>>>	'Rio	de	Janeiro'.replace('Rio',	'Mar')

'Mar	de	Janeiro'

>>>	word	=	"Rio	de	Janeiro"

>>>	print(word.count('	'))

String Manipulation in Python - Renan Moura - renanmf.com

8

Repeating
a
String

You can use the * symbol to repeat a string.

Here we are multiplying the word “Tokyo” by 3.

2

>>>	words	=	"Tokyo"	*	3	

>>>	print(words)

TokyoTokyoTokyo

String Manipulation in Python - Renan Moura - renanmf.com

9

How
to
Split
a
String
Split a string into smaller parts is a very common task, to do so, we
use the split() method in Python.

Let’s see some examples on how to do that.

Example
1:
whitespaces
as
delimiters

In this example, we split the phrase by whitespaces creating a list
named my_words with five items corresponding to each word in the
phrase.

Notice that, by default, the split() method uses any consecutive
number of whitespaces as delimiters, we can change the code above
to:

my_phrase	=	"let's	go	to	the	beach"

my_words	=	my_phrase.split("	")

for	word	in	my_words:

				print(word)

#output:

#let's

#go

#to

#the

#beach

print(my_words)

#output:

#["let's",	'go',	'to',	'the',	'beach']

my_phrase	=	"let's	go	to	the	beach"

my_words	=	my_phrase.split()

for	word	in	my_words:

				print(word)

#output:

#let's

#go

String Manipulation in Python - Renan Moura - renanmf.com

10

The output is the same since we only have 1 whitespace between
each word.

Example
2:
passing
different
arguments
as
delimiters

When working with data, it’s very common to read some CSV files to
extract information from them.

As such, you might need to store some specific data from a certain
column.

CSV files usually have fields separated by a semicolon “;” or a comma
“,”.

In this example, we are going to use the split() method passing as
argument a specific delimiter, “;” in this case.

#to

#the

#beach

my_csv	=	"mary;32;australia;mary@email.com"

my_data	=	my_csv.split(";")

for	data	in	my_data:

				print(data)

#output:

#mary

#32

#australia

#mary@email.com

print(my_data[3])

#output:

#	mary@email.com

String Manipulation in Python - Renan Moura - renanmf.com

11

How
to
remove
all
white
spaces
in
a
string
If you want to truly remove any space in a string, leaving only the
characters, the best solution is to use a regular expression.

You need to import the re module that provides regular expression
operations.

Notice the \s represents not only space '	', but also form feed \f,
line feed \n, carriage return \r, tab \t, and vertical tab \v.

In summary, \s	=	[\f\n\r\t\v].

The + symbol is called a quantifier and is read as ‘one or more’,
meaning that it will consider, in this case, one or more white spaces
since it is positioned right after the \s.

The original variable phrase remains the same, you have to assign the
new cleaned string to a new variable, phrase_no_space in this case.

import	re

phrase	=	'	Do			or	do				not			there				is		no	try			'

phrase_no_space	=	re.sub(r'\s+',	'',	phrase)

print(phrase)

#	Do			or	do				not			there				is		no	try			

print(phrase_no_space)

#Doordonotthereisnotry

String Manipulation in Python - Renan Moura - renanmf.com

12

Multiline
Strings
Triple
Quotes

To handle multiline strings in Python you use triple quotes, either
single or double.

This first example uses double quotes.

Now the same as before, but with single quotes.

Notice both outputs are the same.

Parentheses

long_text	=	"""This	is	a	multiline,

a	long	string	with	lots	of	text,

I'm	wrapping	it	in	triple	quotes	to	make	it	work."""

print(long_text)

#output:

#This	is	a	multiline,

#

#a	long	string	with	lots	of	text,

#

#I'm	wrapping	it	in	triple	quotes	to	make	it	work.

long_text	=	'''This	is	a	multiline,

a	long	string	with	lots	of	text,

I'm	wrapping	it	in	triple	quotes	to	make	it	work.'''

print(long_text)

#output:

#This	is	a	multiline,

#

#a	long	string	with	lots	of	text,

#

#I'm	wrapping	it	in	triple	quotes	to	make	it	work.

String Manipulation in Python - Renan Moura - renanmf.com

13

Let’s see an example with parentheses.

As you can see, the result is not the same, to achieve new lines I have
to add \n, like this:

Backlashes

Finally, backlashes are also a possibility.

Notice there is no space after the \ character, it would throw an error
otherwise.

long_text	=	("This	is	a	multiline,	"

"a	long	string	with	lots	of	text	"

"I'm	wrapping	it	in	triple	quotes	to	make	it	work.")

print(long_text)

#This	is	a	multiline,	a	long	string	with	lots	of	text	I'm	wrapping	it	

#in	triple	quotes	to	make	it	work.

long_text	=	("This	is	a	multiline,	\n\n"

"a	long	string	with	lots	of	text	\n\n"

"I'm	wrapping	it	in	triple	quotes	to	make	it	work.")

print(long_text)

#This	is	a	multiline,	

#

#a	long	string	with	lots	of	text	

#

#I'm	wrapping	it	in	triple	quotes	quotes	to	make	it	work.

long_text	=	"This	is	a	multiline,	\n\n"	\

"a	long	string	with	lots	of	text	\n\n"	\

"I'm	using	backlashes	to	make	it	work."

print(long_text)

#This	is	a	multiline,	

#

#a	long	string	with	lots	of	text	

#

#I'm	wrapping	it	in	triple	quotes	to	make	it	work.

String Manipulation in Python - Renan Moura - renanmf.com

14

lstrip():
removing
spaces
and
chars
from
the
beginning
of
a
string
Use the lstrip() method to remove spaces from the beginning of a
string.

Notice that the original regular_text variable remains unchanged,
thus you need to assign the return of the method to a new variable,
no_space_begin_text in this case.

Removing
Chars

The lstrip() method also accepts specific chars for removal as
parameters.

regular_text	=	"			This	is	a	regular	text."

no_space_begin_text	=	regular_text.lstrip()

print(regular_text)

#'			This	is	a	regular	text.'

print(no_space_begin_text)

#'This	is	a	regular	text.'

regular_text	=	"$@G#This	is	a	regular	text."

clean_begin_text	=	regular_text.lstrip("#$@G")

print(regular_text)

#$@G#This	is	a	regular	text.

print(clean_begin_text)

#This	is	a	regular	text.

String Manipulation in Python - Renan Moura - renanmf.com

15

rstrip():
removing
spaces
and
chars
from
the
end
of
a
string
Use the rstrip() method to remove spaces from the end of a string.

Notice that the original regular_text variable remains unchanged,
thus you need to assign the return of the method to a new variable,
no_space_end_text in this case.

The rstrip() method also accepts specific chars for removal as
parameters.

regular_text	=	"This	is	a	regular	text.			"

no_space_end_text	=	regular_text.rstrip()

print(regular_text)

#'This	is	a	regular	text.			'

print(no_space_end_text)

#'This	is	a	regular	text.'

regular_text	=	"This	is	a	regular	text.$@G#"

clean_end_text	=	regular_text.rstrip("#$@G")

print(regular_text)

#This	is	a	regular	text.$@G#

print(clean_end_text)

#This	is	a	regular	text.

String Manipulation in Python - Renan Moura - renanmf.com

16

strip():
removing
spaces
and
chars
from
the
beginning
and
end
of
a
string
Use the strip() method to remove spaces from the beginning and
the end of a string.

Notice that the original regular_text variable remains unchanged,
thus you need to assign the return of the method to a new variable,
no_space_text in this case.

The strip() method also accepts specific chars for removal as
parameters.

regular_text	=	"		This	is	a	regular	text.			"

no_space_text	=	regular_text.strip()

print(regular_text)

#'		This	is	a	regular	text.			'

print(no_space_text)

#'This	is	a	regular	text.'

regular_text	=	"AbC#This	is	a	regular	text.$@G#"

clean_text	=	regular_text.strip("AbC#$@G")

print(regular_text)

#AbC#This	is	a	regular	text.$@G#

print(clean_text)

#This	is	a	regular	text.

String Manipulation in Python - Renan Moura - renanmf.com

17

String
Lowercase
Use the lower() method to transform a whole string into lowercase.

Notice that the original regular_text variable remains unchanged,
thus you need to assign the return of the method to a new variable,
lower_case_text in this case.

regular_text	=	"This	is	a	Regular	TEXT."

lower_case_text	=	regular_text.lower()

print(regular_text)

#This	is	a	Regular	TEXT.

print(lower_case_text)

#this	is	a	regular	text.

String Manipulation in Python - Renan Moura - renanmf.com

18

String
Uppercase
Use the upper() method to transform a whole string into uppercase.

Notice that the original regular_text variable remains unchanged,
thus you need to assign the return of the method to a new variable,
upper_case_text in this case.

regular_text	=	"This	is	a	regular	text."

upper_case_text	=	regular_text.upper()

print(regular_text)

#This	is	a	regular	text.

print(upper_case_text)

#THIS	IS	A	REGULAR	TEXT.

String Manipulation in Python - Renan Moura - renanmf.com

19

Title
Case
Use the title() method to transform the first letter in each word into
upper case and the rest of characters into lower case.

Notice that the original regular_text variable remains unchanged,
thus you need to assign the return of the method to a new variable,
title_case_text in this case.

regular_text	=	"This	is	a	regular	text."

title_case_text	=	regular_text.title()

print(regular_text)

#This	is	a	regular	text.

print(title_case_text)

#This	Is	A	Regular	Text.

String Manipulation in Python - Renan Moura - renanmf.com

20

Swap
Case
Use the swapcase() method to transform the upper case characters
into a lower case and vice versa.

Notice that the original regular_text variable remains unchanged,
thus you need to assign the return of the method to a new variable,
swapped_case_text in this case.

regular_text	=	"This	IS	a	reguLar	text."

swapped_case_text	=	regular_text.swapcase()

print(regular_text)

#This	IS	a	reguLar	text.

print(swapped_case_text)

#tHIS	is	A	REGUlAR	TEXT.

String Manipulation in Python - Renan Moura - renanmf.com

21

Checking
if
a
string
is
empty
The pythonic way to check if a string is empty is using the not
operator.

To check the opposite, if the string is not empty:

my_string	=	''

if	not	my_string:

		print("My	string	is	empty!!!")

my_string	=	'amazon,	microsoft'

if	my_string:

		print("My	string	is	NOT	empty!!!")

String Manipulation in Python - Renan Moura - renanmf.com

22

rjust():
right-justified
string
Use the rjust() to right-justify a string.

Notice the spaces in the second string. The word ‘beach’ has 5
characters, which gives us 27 spaces to fill with empty space.

The original word variable remains unchanged, thus we need to assign
the return of the method to a new variable, word_justified in this
case.

The rjust() also accepts a specific char as a parameter to fill the
remaining space.

Similar to the first situation, I have 27 $ signs to make it 32 total when
I count the 5 chars contained in the word ‘beach’.

word	=	'beach'

number_spaces	=	32

word_justified	=	word.rjust(number_spaces)

print(word)

#'beach'

print(word_justified)

#'																											beach'

word	=	'beach'

number_chars	=	32

char	=	'$'

word_justified	=	word.rjust(number_chars,	char)

print(word)

#beach

print(word_justified)

#$$$$$$$$$$$$$$$$$$$$$$$$$$$beach

String Manipulation in Python - Renan Moura - renanmf.com

23

ljust():
left-justified
string
Use the ljust() to left-justify a string.

Notice the spaces in the second string. The word ‘beach’ has 5
characters, which gives us 27 spaces to fill with empty space.

The original word variable remains unchanged, thus we need to assign
the return of the method to a new variable, word_justified in this
case.

The ljust() also accepts a specific char as a parameter to fill the
remaining space.

Similar to the first situation, I have 27 $ signs to make it 32 total when
I count the 5 chars contained in the word ‘beach’.

word	=	'beach'

number_spaces	=	32

word_justified	=	word.ljust(number_spaces)

print(word)

#'beach'

print(word_justified)

#'beach																											'

word	=	'beach'

number_chars	=	32

char	=	'$'

word_justified	=	word.ljust(number_chars,	char)

print(word)

#beach

print(word_justified)

#beach$$$$$$$$$$$$$$$$$$$$$$$$$$$

String Manipulation in Python - Renan Moura - renanmf.com

24

isalnum():
checking
alphanumeric
only
in
a
string
Use the isalnum() method to check if a string only contains
alphanumeric characters.

word	=	'beach'

print(word.isalnum())

#output:	True

word	=	'32'

print(word.isalnum())

#output:	True

word	=	'number32'	#notice	there	is	no	space

print(word.isalnum())

#output:	True

word	=	'Favorite	number	is	32'	#notice	the	space	between	words

print(word.isalnum())

#output:	False

word	=	'@number32$'	#notice	the	special	chars	'@'	and	'$'

print(word.isalnum())

#output:	False

String Manipulation in Python - Renan Moura - renanmf.com

25

isprintable():
checking
printable
characters
in
a
string
Use the isprintable() method to check if the characters in a string
are printable.

Notice that in the first 4 examples, all the character take some space,
even if it is an empty space as you could see in the first example.

The last example returns False, showing 5 kind of characters that are
non-printable: form feed \f, line feed \n, carriage return \r, tab \t,
and vertical tab \v.

Some of these ‘invisible’ characters may mess up your printing giving
you an unxpected output, even when everything ‘looks’ alright.

text	=	''	#	notice	this	is	an	empty	string,	there	is	no	white	space	here

print(text.isprintable())

#output:	True

text	=	'This	is	a	regular	text'

print(text.isprintable())

#output:	True

text	=	'	'	#one	space

print(text.isprintable())

#output:	True

text	=	'																								'		#many	spaces

print(text.isprintable())

#output:	True

text	=	'\f\n\r\t\v'

print(text.isprintable())

#output:	False

String Manipulation in Python - Renan Moura - renanmf.com

26

isspace():
checking
white
space
only
in
a
string
Use the isspace() method to check if the characters in a string are all
white spaces.

Notice in the second example that white space is not only '	', but
also form feed \f, line feed \n, carriage return \r, tab \t, and vertical
tab \v.

text	=	'	'

print(text.isspace())

#output:	True

text	=	'	\f\n\r\t\v'

print(text.isspace())

#output:	True

text	=	'																								'

print(text.isspace())

#output:	True

text	=	''	#	notice	this	is	an	empty	string,	there	is	no	white	space	here

print(text.isspace())

#output:	False

text	=	'This	is	a	regular	text'

print(text.isspace())

#output:	False

String Manipulation in Python - Renan Moura - renanmf.com

27

startswith():
checking
if
a
string
begins
with
a
certain
value
Use the startswith() method to check if a string begins with a certain
value.

You can also set if you want to begin the match in a specific position
and end it in another specific position of the string.

Finally, you might want to check for multiple strings at once, instead
of using some kind of loop, you can use a tuple as an argument with
all the strings you want to match against.

phrase	=	"This	is	a	regular	text"

print(phrase.startswith('This	is'))

#output:	True

print(phrase.startswith('text'))

#output:	False

phrase	=	"This	is	a	regular	text"

#the	word	regular	starts	at	position	10	of	the	phrase

print(phrase.startswith('regular',	10))	

#output:	True

#look	for	in	'regular	text'

print(phrase.startswith('regular',	10,	22))	

#output:	True

#look	for	in	'regul'

print(phrase.startswith('regular',	10,	15))	

#output:	False

phrase	=	"This	is	a	regular	text"

print(phrase.startswith(('regular',	'This')))

#output:	True

print(phrase.startswith(('regular',	'text')))

#output:	False

String Manipulation in Python - Renan Moura - renanmf.com

28

print(phrase.startswith(('regular',	'text'),	10,	22))	#look	for	in	'regular	text'

#output:	True

String Manipulation in Python - Renan Moura - renanmf.com

29

capitalize():
first
character
only
to
upper
case
in
a
string
Use the capitalize() method to convert to upper case only the first
character in a string.

The rest of the string is converted to lower case.

Notice that any character counts, such as a number or a special
character, thus, in the last example, 3 is the first character and suffers
no alterations while the rest of the string is converted to lower case.

text	=	'this	is	a	regular	text'

print(text.capitalize())

#This	is	a	regular	text

text	=	'THIS	IS	A	REGULAR	TEXT'

print(text.capitalize())

#This	is	a	regular	text

text	=	'THIS	$	1S	@	A	R3GULAR	TEXT!'

print(text.capitalize())

#This	$	1s	@	a	r3gular	text!

text	=	'3THIS	$	1S	@	A	R3GULAR	TEXT!'

print(text.capitalize())

#3this	$	1s	@	a	r3gular	text!

String Manipulation in Python - Renan Moura - renanmf.com

30

isupper():
checking
upper
case
only
in
a
string
Use the isupper() method to check if the characters in a string are all
in upper case.

If you notice the last example, the numbers and special characters
like @ and $ in the string make no difference and isupper() still returns
True because the method only verifies the alphabetical characters.

text	=	'This	is	a	regular	text'

print(text.isupper())

#output:	False

text	=	'THIS	IS	A	REGULAR	TEXT'

print(text.isupper())

#output:	True

text	=	'THIS	$	1S	@	A	R3GULAR	TEXT!'

print(text.isupper())

#output:	True

String Manipulation in Python - Renan Moura - renanmf.com

31

endswith():
check
if
a
string
ends
with
a
certain
value
Use the endswith() method to check if a string ends with a certain
value.

You can also set if you want to begin the match in a specific position
and end it in another specific position of the string.

Finally, you might want to check for multiple strings at once, instead
of using some kind of loop, you can use a tuple as an argument with
all the strings you want to match against.

phrase	=	"This	is	a	regular	text"

print(phrase.endswith('regular	text'))

#output:	True

print(phrase.endswith('This'))

#output:	False

phrase	=	"This	is	a	regular	text"

#look	for	in	'This	is',	the	rest	of	the	phrase	is	not	included

print(phrase.endswith('This	is',	0,	7))

#output:	True

#look	for	in	'This	is	a	regular'

print(phrase.endswith('regular',	0,	17))	

#output:	True

#look	for	in	'This	is	a	regul'

print(phrase.endswith('regular',	0,	15))	

#output:	False

phrase	=	"This	is	a	regular	text"

print(phrase.endswith(('regular',	'This',	'text')))

#output:	True

print(phrase.endswith(('regular',	'is')))

#output:	False

String Manipulation in Python - Renan Moura - renanmf.com

32

#look	for	in	'regular	text'

print(phrase.endswith(('regular',	'text'),	10,	22))	

#output:	True

String Manipulation in Python - Renan Moura - renanmf.com

33

join():
join
items
of
an
iterable
into
one
string
Use the join() method to join all the items if an iterable into a string.

The basic syntax is: string.join(iterable)

As per the syntax above, a string is required as a separator.

The method returns a new string, which means that the original
iterator remains unchanged.

Since the join() method only accepts strings, if any element in the
iterable is of a different type, an error will be thrown.

Let’s see some examples with: string, list, tuple, set, and dictionary

join():
Strings

The join() method puts the $ sign as a separator for every character
in the string.

join():
Lists

I have a simple list of three items representing car brands.

The join() method is gonna use the $ sign as a separator.

my_string	=	'beach'

print('$'.join(my_string))

#output:	beach

String Manipulation in Python - Renan Moura - renanmf.com

34

It concatenates all the items on the list and puts the $ sign between
them.

This another example remembers you that join() does not work with
non-string items.

When trying to concatenate the int items, an error is raised.

join():
Tuples

The tuple follows the same rationale as the list example explained
before.

Again, I’m using the $ sign as separator.

join():
Sets

Since the set is also the same as the tuple and the list, I’ve used a
different separator in this example.

my_list	=	['bmw',	'ferrari',	'mclaren']

print('$'.join(my_list))

#output:	bmw$ferrari$mclaren

my_list	=	[1,	2,	3]

print('$'.join(my_list))

#output:

#Traceback	(most	recent	call	last):

#		File	"<stdin>",	line	1,	in	<module>

#TypeError:	sequence	item	0:	expected	str	instance,	int	found

my_tuple	=	('bmw',	'ferrari',	'mclaren')

print('$'.join(my_tuple))

#output:	bmw$ferrari$mclaren

String Manipulation in Python - Renan Moura - renanmf.com

35

join():
dictionaries

The dictionary has a catch when you use the join() method: it joins
the keys, not the values.

This example shows the concatenation of the keys.

my_set	=	{'bmw',	'ferrari',	'mclaren'}

print('|'.join(my_set))

#output:	ferrari|bmw|mclaren

my_dict	=	{'bmw':	'BMW	I8',	'ferrari':	'Ferrari	F8',	'mclaren':	'McLaren	720S'}

print(','.join(my_dict))

#output:	bmw,ferrari,mclaren

String Manipulation in Python - Renan Moura - renanmf.com

36

splitlines():
splitting
a
string
at
line
breaks
Use the splitlines() method to split a string at line breaks.

The return of the method is a list of the lines.

If you want to keep the line break, the splitlines() accepts a
parameter that can be set to True, the default is False.

my_string	=	'world	\n	cup'

print(my_string.splitlines())

#output:	['world	',	'	cup']

my_string	=	'world	\n	cup'

print(my_string.splitlines(True))

#output:	['world	\n',	'	cup']

String Manipulation in Python - Renan Moura - renanmf.com

37

islower():
checking
lower
case
only
in
a
string
Use the islower() method to check if the characters in a string are all
in lower case.

If you notice the last example, the numbers and special characters
like @ and $ in the string make no difference and islower() still returns
True because the method only verifies the alphabetical characters.

text	=	'This	is	a	regular	text'

print(text.islower())

#output:	False

text	=	'this	is	a	regular	text'

print(text.islower())

#output:	True

text	=	'this	$	1s	@	a	r3gular	text!'

print(text.islower())

#output:	True

String Manipulation in Python - Renan Moura - renanmf.com

38

isnumeric():
checking
numerics
only
in
a
string
Use the isnumeric() method to check if a string only contains numeric
chars.

Numerics include numbers from 0 to 9 and combinations of them,
roman numerals, superscripts, subscripts, fractions, and other
variations.

isdecimal() is more strict than isdigit(), which in its turn is more
strict than isnumeric().

word	=	'32'

print(word.isnumeric())

#output:	True

print("\u2083".isnumeric())	#unicode	for	subscript	3

#output:	True

print("\u2169".isnumeric())	#unicode	for	roman	numeral	X

#output:	True

word	=	'beach'

print(word.isnumeric())

#output:	False

word	=	'number32'

print(word.isnumeric())

#output:	False

word	=	'1	2	3'	#notice	the	space	between	chars

print(word.isnumeric())

#output:	False

word	=	'@32$'	#notice	the	special	chars	'@'	and	'$'

print(word.isnumeric())

#output:	False

String Manipulation in Python - Renan Moura - renanmf.com

39

isdigit():
checking
digits
only
in
a
string
Use the isdigit() method to check if a string only contains digits.

Digits include numbers from 0 to 9 and also superscripts and
subscripts.

isdecimal() is more strict than isdigit(), which in its turn is more
strict than isnumeric().

word	=	'32'

print(word.isdigit())

#output:	True

print("\u2083".isdigit())	#unicode	for	subscript	3

#output:	True

word	=	'beach'

print(word.isdigit())

#output:	False

word	=	'number32'

print(word.isdigit())

#output:	False

word	=	'1	2	3'	#notice	the	space	between	chars

print(word.isdigit())

#output:	False

word	=	'@32$'	#notice	the	special	chars	'@'	and	'$'

print(word.isdigit())

#output:	False

String Manipulation in Python - Renan Moura - renanmf.com

40

isdecimal():
checking
decimals
only
in
a
string
Use the isdecimal() method to check if a string only contains
decimals, that is, only numbers from 0 to 9 and combinations of these
numbers.

Subscript, superscript, roman numerals, and other variations will be
returned as False.

isdecimal() is more strict than isdigit(), which in its turn is more
strict than isnumeric().

word	=	'32'

print(word.isdecimal())

#output:	True

word	=	'954'

print(word.isdecimal())

#output:	True

print("\u2083".isdecimal())	#unicode	for	subscript	3

#output:	False

word	=	'beach'

print(word.isdecimal())

#output:	False

word	=	'number32'

print(word.isdecimal())

#output:	False

word	=	'1	2	3'	#notice	the	space	between	chars

print(word.isdecimal())

#output:	False

word	=	'@32$'	#notice	the	special	chars	'@'	and	'$'

print(word.isdecimal())

#output:	False

String Manipulation in Python - Renan Moura - renanmf.com

41

isalpha():
checking
letters
only
in
a
string
Use the isalpha() method to check if a string only contains letters.

word	=	'beach'

print(word.isalpha())

#output:	True

word	=	'32'

print(word.isalpha())

#output:	False

word	=	'number32'

print(word.isalpha())

#output:	False

word	=	'Favorite	number	is	blue'	#notice	the	space	between	words

print(word.isalpha())

#output:	False

word	=	'@beach$'	#notice	the	special	chars	'@'	and	'$'

print(word.isalpha())

#output:	False

String Manipulation in Python - Renan Moura - renanmf.com

42

istitle():
checking
if
every
word
begins
with
an
upper
case
char
in
a
string
Use the istitle() method to check if the first character in every word
in a string is upper case and the other characters are lower case.

If you notice the last example, the numbers and special characters
like @ and $ in the string make no difference and istitle() still returns
True because the method only verifies the alphabetical characters.

text	=	'This	is	a	regular	text'

print(text.istitle())

#output:	False

text	=	'This	Is	A	Regular	Text'

print(text.istitle())

#output:	True

text	=	'This	$	Is	@	A	Regular	3	Text!'

print(text.istitle())

#output:	True

String Manipulation in Python - Renan Moura - renanmf.com

43

expandtabs():
set
the
number
of
spaces
for
a
tab
in
a
string
Use the expandtabs() method to set the number of spaces for a tab.

You can set any number of spaces, but when no argument is given,
the default is 8.

Basic
Usage

Notice the 7 spaces between the letters B and R.

The \t is at position two after one character, so it will be replaced
with 7 spaces.

Let’s look at another example.

Since WORL has four characters, the \t is replaced with 4 spaces to
make it a total of 8, the default tabsize.

The code below gives us 4 spaces for the first tab after four
characters ‘WORL’ and 7 spaces for the second tab after one
character ‘D’.

my_string	=	'B\tR'

print(my_string.expandtabs())

#output:	B							R

my_string	=	'WORL\tD'

print(my_string.expandtabs())

#output:	WORL				D

String Manipulation in Python - Renan Moura - renanmf.com

44

Custom
Tabsize

It is possible to set the tabsize as needed.

In this example the tabsize is 4, which gives us 3 spaces after the
char ‘B’.

This code has tabsize set to 6, which gives us 5 spaces after the char
‘B’.

my_string	=	'WORL\tD\tCUP'

print(my_string.expandtabs())

#output:	WORL				D							CUP

my_string	=	'B\tR'

print(my_string.expandtabs(4))

#output:	B			R

my_string	=	'B\tR'

print(my_string.expandtabs(6))

#output:	B					R

String Manipulation in Python - Renan Moura - renanmf.com

45

center():
centered
string
Use the center() method to center a string.

Notice the spaces in the second string. The word ‘beach’ has 5
characters, which gives us 28 spaces to fill with empty space, 14
spaces before and 14 after to center the word.

The original word variable remains unchanged, thus we need to assign
the return of the method to a new variable, word_centered in this case.

The center() also accepts a specific character as a parameter to fill
the remaining space.

Similar to the first situation, I have 14 $ in each side to make it 33 total
when I count the 5 chars contained in the word ‘beach’.

word	=	'beach'

number_spaces	=	32

word_centered	=	word.center(number_spaces)

print(word)

#'beach'

print(word_centered)

##output:	'														beach														'

word	=	'beach'

number_chars	=	33

char	=	'$'

word_centered	=	word.center(number_chars,	char)

print(word)

#beach

print(word_centered)

#output:	$$$$$$$$$$$$$$beach$$$$$$$$$$$$$$

String Manipulation in Python - Renan Moura - renanmf.com

46

zfill():
add
zeros
to
a
string
Use the zfill() to insert zeros 0 at the beginning of a string.

The amount of zeros is given by the number passed as argument
minus the number of chars in the string.

The word ‘beach’ has 5 characters, which gives us 27 spaces to fill
with zeros to make it 32 total as specified in the variable size_string

The original word variable remains unchanged, thus we need to assign
the return of the method to a new variable, word_zeros in this case.

Also notice that if the argument is less than the number of chars in the
string, nothing changes.

In the example below, ‘beach’ has 5 chars and we want to add zeros
until it reaches the size_string of 4, which means there is nothing to
be done.

word	=	'beach'

size_string	=	32

word_zeros	=	word.zfill(size_string)

print(word)

#beach

print(word_zeros)

#000000000000000000000000000beach

word	=	'beach'

size_string	=	4

word_zeros	=	word.zfill(size_string)

print(word)

#beach

String Manipulation in Python - Renan Moura - renanmf.com

47

print(word_zeros)

#'beach'

String Manipulation in Python - Renan Moura - renanmf.com

48

find():
check
if
a
string
has
a
certain
substring
Use the find() method to check if a string has certain substring.

The method returns the index of the first occurrence of the given
value.

Remember the index count starts at 0.

0

10

18

If the value is not found, the return will be -1.

-1

You can also choose to begin the search in a specific position and
end it in another specific position of the string.

phrase	=	"This	is	a	regular	text"

print(phrase.find('This'))

print(phrase.find('regular'))

print(phrase.find('text'))

phrase	=	"This	is	a	regular	text"

print(phrase.find('train'))

phrase	=	"This	is	a	regular	text"

#look	for	in	'This	is',	the	rest	of	the	phrase	is	not	included

print(phrase.find('This',	0,	7))

String Manipulation in Python - Renan Moura - renanmf.com

49

0

10

8

#look	for	in	'This	is	a	regular'

print(phrase.find('regular',	0,	17))

#look	for	in	'This	is	a	regul'

print(phrase.find('a',	0,	15))

String Manipulation in Python - Renan Moura - renanmf.com

50

Removing
a
Prefix
or
a
Suffix
in
a
String
As of Python 3.9, the String type will have two new methods.

You can specifically remove a prefix from a string using the
removeprefix() method:

Or remove a suffix using the removesuffix() method:

Simply pass as argument the text to be considered as prefix or suffix
to be removed and the method will return a new string as a result.

I recommend the reading of the PEP 616 in the official documentation
if you are curious about how these features are added to the
language.

This one is a pretty simple change and very friendly for beginners to
get used to reading the official documentation.

>>>	'Rio	de	Janeiro'.removeprefix("Rio")

'	de	Janeiro'

>>>	'Rio	de	Janeiro'.removesuffix("eiro")

'Rio	de	Jan'

String Manipulation in Python - Renan Moura - renanmf.com

51

https://www.python.org/dev/peps/pep-0616/

lstrip()
vs
removeprefix()
and
rstrip()
vs
removesuffix()
This is a confusion many people make.

It is easy to look at lstrip() and removeprefix() and wonder what is
the real difference between the two.

When using lstrip(), the argument is a set of leading characters that
will be removed as many times as they occur:

While removeprefix() will remove only the exact match:

You can use the same rationale to distinguish between rstrip() and
removesuffix().

And as a bonus, just in case you have never worked with regular
expressions before, be grateful that you have strip() to trim

>>>	word	=	'hubbubbubboo'

>>>	word.lstrip('hub')

'oo'

>>>	word	=	'hubbubbubboo'

>>>	word.removeprefix('hub')

'bubbubboo'

>>>	word	=	'peekeeneenee'

>>>	word.rstrip('nee')

'peek'

>>>	word	=	'peekeeneenee'

>>>	word.removesuffix('nee')

'peekeenee'

String Manipulation in Python - Renan Moura - renanmf.com

52

character sets from a string instead of a regular expression:

>>>	import	re

>>>	word	=	'amazonia'

>>>	word.strip('ami')

'zon'

>>>	re.search('^[ami]*(.*?)[ami]*$',	word).group(1)

'zon'

String Manipulation in Python - Renan Moura - renanmf.com

53

Slicing
Slicing is one of the most useful tools in the Python language.

As such, it is important to have a good grasp of how it works.

Basic
Notation

Let’s say we have an array called ‘list’.

list[start:stop:step]

start: where you want the slicing to begin
stop: until where you want the slicing to go, but remember the
value of stop is not included
step: if you want to skip an item, the default being 1, so you go
through all items in the array

Indexes

When slicing, The indices are points in between the characters, not on
the characters.

For the word ‘movie’:

	+---+---+---+---+---+

	|	m	|	o	|	v	|	i	|	e	|

	+---+---+---+---+---+

	0			1			2			3			4			5	

-5		-4		-3		-2		-1		

If slice from 0 until 2, I get ‘mo’ in the example above and not ‘mov’.

String Manipulation in Python - Renan Moura - renanmf.com

54

Since a string is just a list of characters, the same applies with to list:

my_list	=	[1,	2	,	3,	4,	5]

Becomes:

	+---+---+---+---+---+

	|	1	|	2	|	3	|	4	|	5	|

	+---+---+---+---+---+

	0			1			2			3			4			5	

-5		-4		-3		-2		-1		

Examples

We have a variable containing the string ‘movie’ like so:

All the examples below will be applied to this word.

Example
1

To get the first two characters:

Notice that we could have used 0 to denote the beginning, but that is
not necessary.

Example
2

The last item:

word	=	'movie'

sliced	=	word[:2]

print(sliced)

mo

sliced	=	word[-1]

String Manipulation in Python - Renan Moura - renanmf.com

55

Example
3

Skipping letters with a step of 2:

Example
4

A nice trick is to easily revert an array:

The default step is 1, that is, go forward 1 character of the string at a
time.

If you set the step to -1 you have the opposite, go back 1 character at
a time beginning at the end of the string.

print(sliced)

e

sliced	=	word[::2]

print(sliced)

mve

sliced	=	word[::-1]

print(sliced)

eivom

String Manipulation in Python - Renan Moura - renanmf.com

56

How
to
reverse
a
string
To reverse a string use the slice syntax:

ferrari

irarref

The slice syntax allows you to set a step, which is -1 in the example.

The default step is 1, that is, go forward 1 character of the string at a
time.

If you set the step to -1 you have the opposite, go back 1 character at
a time.

So you start at the position of the last character and move backwards
to the first character at position 0.

my_string	=	"ferrari"

my_string_reversed	=	my_string[::-1]

print(my_string)

print(my_string_reversed)

String Manipulation in Python - Renan Moura - renanmf.com

57

String
Interpolation
with
f-strings
If you need to concatenate a string and another type, you have to do
typecasting when using the print function as explained in Type
casting in Python.

So to convert age to a string you make str(age) in order to print a
phrase using the + sign.

My	name	is	Bob	and	I	weight	80	kg

But that is not the best way to handle situations like this.

The best solution is to use String Interpolation, also called f
strings.

Let’s first see how our example looks like using string interpolation.

My	name	is	Bob	and	I	weight	80	kg

Notice the f at the beginning signaling to the interpreter that we are
going to use interpolation, the presence of this f is the reason why
this is also called f
strings.

name	=	'Bob'

weight	=	80

print('My	name	is	'	+	name	+	'	and	I	weight	'	+	str(weight)	+	'	kg')

name	=	'Bob'

weight	=	80

print(f'My	name	is	{name}	and	I	weight	{weight}	kg')

String Manipulation in Python - Renan Moura - renanmf.com

58

https://renanmf.com/type-casting-python/

After the f you start your string, as usual, using quotes.

The key difference is that when you want to evaluate an expression
like using the value of a variable, you just put them inside curly
braces.

This is a simpler and more comfortable way to write very complex
strings and you don’t have to worry about type conversion using type
casting.

String Manipulation in Python - Renan Moura - renanmf.com

59

Conclusion
That’s it!

Congratulations on reaching the end.

I want to thank you for reading this book.

If you want to learn more, check out my blog renanmf.com.

Let me know if you have any suggestions by reaching out to me at
renan@renanmf.com.

You can also find me as @renanmouraf on:

Twitter: https://twitter.com/renanmouraf
Linkedin: https://www.linkedin.com/in/renanmouraf
Instagram: https://www.instagram.com/renanmouraf

String Manipulation in Python - Renan Moura - renanmf.com

60

https://renanmf.com
mailto:renan@renanmf.com
https://twitter.com/renanmouraf
https://www.linkedin.com/in/renanmouraf
https://www.instagram.com/renanmouraf

	Preface
	Basics
	How to Split a String
	How to remove all white spaces in a string
	Multiline Strings
	lstrip(): removing spaces and chars from the beginning of a string
	rstrip(): removing spaces and chars from the end of a string
	strip(): removing spaces and chars from the beginning and end of a string
	String Lowercase
	String Uppercase
	Title Case
	Swap Case
	Checking if a string is empty
	rjust(): right-justified string
	ljust(): left-justified string
	isalnum(): checking alphanumeric only in a string
	isprintable(): checking printable characters in a string
	isspace(): checking white space only in a string
	startswith(): checking if a string begins with a certain value
	capitalize(): first character only to upper case in a string
	isupper(): checking upper case only in a string
	endswith(): check if a string ends with a certain value
	join(): join items of an iterable into one string
	splitlines(): splitting a string at line breaks
	islower(): checking lower case only in a string
	isnumeric(): checking numerics only in a string
	isdigit(): checking digits only in a string
	isdecimal(): checking decimals only in a string
	isalpha(): checking letters only in a string
	istitle(): checking if every word begins with an upper case char in a string
	expandtabs(): set the number of spaces for a tab in a string
	center(): centered string
	zfill(): add zeros to a string
	find(): check if a string has a certain substring
	Removing a Prefix or a Suffix in a String
	lstrip() vs removeprefix() and rstrip() vs removesuffix()
	Slicing
	How to reverse a string
	String Interpolation with f-strings
	Conclusion

